dl_esm_inf Documentation
Release 1.0

Rupert Ford, Joerg Henrichs, Andrew Porter, Sergi Siso

Sep 16, 2021

Contents:

Introduction 1
Grid 3
2.1 Thegrid_init Routine e 4
Fields 5
3.1 Thefield constructormethod e e e e 5
3.2 Device infrastructure attributes e e e e e e e 5
Example 9

Indices and tables 11

CHAPTER 1

Introduction

The dl_esm_inf (for Daresbury Laboratory Earth-System Modelling Infrastructure) library provides basic support for
finite-difference earth-system-type models written in Fortran. It currently supports two-dimensional, finite-difference
models.

The first version of this library was developed to support 2D finite- difference shallow-water models in the GOcean
Project.

di_esm_inf Documentation, Release 1.0

2 Chapter 1. Introduction

CHAPTER 2

Grid

The dl_esm_inf library contains a grid_mod module which defines a grid_type and associated constructor:

use grid_mod

!> The grid on which our fields are defined
type (grid_type), target :: model_grid

! Create the model grid

model_grid = grid_type (GO_ARAKAWA_C, &
(/GO_BC_EXTERNAL, GO_BC_EXTERNAL, GO_BC_NONE/), &
GO_OFFSET_NE)

Note: The grid object itself must be declared with the target attribute. This is because each field object will contain
a pointer to it.

The grid_type constructor takes three arguments:
1. The type of grid (only GO_ARAKAWA_C is currently supported)

2. The boundary conditions on the domain for the x, y and z dimensions (see below). The value for the z dimension
is currently ignored.

3. The ‘index offset’ - the convention used for indexing into offset fields.

Three types of boundary condition are currently supported:

Name Description

GO_BC_NONE No boundary conditions are applied.

GO_BC_EXTERNAL | Some external forcing is applied. This must be implemented by a kernel. The domain
must be defined with a T-point mask (see The grid_init Routine).
GO_BC_PERIODIC Periodic boundary conditions are applied.

The infrastructure requires this information in order to determine the extent of the model grid.

di_esm_inf Documentation, Release 1.0

The index offset is required because a model (kernel) developer has choice in how they actually implement the stag-
gering of variables on a grid. This comes down to a choice of which grid points in the vicinity of a given T point have
the same array (i, j) indices. In the diagram below, the image on the left corresponds to choosing those points to the
South and West of a T point to have the same (i, j) index. That on the right corresponds to choosing those points to the
North and East of the T point (this is the offset scheme used in the NEMO ocean model):

The GOcean 1.0 API supports these two different offset schemes, which we term GO_OFFSET_SW and
GO_OFFSET_NE.

Note that the constructor does not specify the extent of the model grid. This is because this information is normally
obtained by reading a file (a namelist file, a netcdf file etc.) which is specific to an application. Once this information
has been obtained, a second routine, grid_init, is provided with which to ‘load’ a grid object with state. This is
discussed below.

2.1 The grid_init Routine

Once an application has determined the details of the model configuration, it must use this information to populate the
grid object. This is done via a call to the grid_init subroutine:

subroutine grid_init (grid, m, n, dxarg, dyarg, tmask)
!> The grid object to configure

type (grid_type), intent (inout) :: grid

!> Dimensions of the model grid

integer, intent (in) t:m, n

!> The (constant) grid spacing in x and y (m)
real (wp), intent (in) :: dxarg, dyarg

!> Optional T-point mask specifying whether each grid point 1is
' wet (1), dry (0) or external (-1).
integer, dimension(m,n), intent (in), optional :: tmask

If no T-mask is supplied then this routine configures the grid appropriately for an all-wet domain with periodic bound-
ary conditions in both the x- and y-dimensions. It should also be noted that currently only grids with constant resolution
in x and y are supported by this routine.

4 Chapter 2. Grid

CHAPTER 3

Fields

3.1 The field constructor method

Once a model has a grid defined it will require one or more fields. dl_esm_inf contains a field_mod module which
defines an r2d_field type (real, 2-dimensional field) and associated constructor:

use field_mod

!> Current ('now') sea-surface height at different grid points
type (r2d_field) :: sshn_u_fld, sshn_v_fld, sshn_t_fld

! Sea-surface height now (current time step)
sshn_u = r2d_field(model_grid, GO_U_POINTS)
sshn_v = r2d_field(model_grid, GO_V_POINTS)
sshn_t = r2d_field(model_grid, GO_T_POINTS)

The constructor takes two arguments:
1. The grid on which the field exists

2. The type of grid point at which the field is defined (GO_U_POINTS, GO_V_POINTS, GO_T_POINTS or
GO_F_POINTS)

Note that the grid object must have been fully configured (by a call to grid_init for instance) before it is passed
into this constructor.

3.2 Device infrastructure attributes

The fields have some infrastructure capabilities to allow the allocation of the data in different memory regions (usually
acceleration devices but it can also be a user provided data layout on the same host) and manage the synchronization
between the original data and the device data.

These capabilities are provided by the following field attributes:

di_esm_inf Documentation, Release 1.0

e field_type%data_on_device: A boolean to indicate if the data has already been allocated and copied in the
device.

* field_type%oread_from_device_f or field_type%read_from_device_c: Function pointers that provide the synchro-
nization method to copy the data back from the device into the host. The user needs to provide one of these

function pointers implemented in the programming model of choice. The Fortran and C function pointers need
to have the following interfaces, respectively:

Fortran:

abstract interface
subroutine read_from_device_f_interface(from, to, nx, ny, width)
use iso_c_binding, only: c_intptr t, c_int
use kind_params_mod, only: go_wp

integer (c_intptr_t), intent(in) :: from
real (go_wp), dimension(:,:), intent (inout) :: to
integer, intent (in) :: nx, ny, width

end subroutine read_from_device_f interface
end interface

C:

abstract interface
subroutine read_from_device_c_interface(from, to, nx, ny, width)
use iso_c_binding, only: c_intptr t, c_int

integer (c_intptr _t), intent(in), wvalue :: from
integer (c_intptr_t), intent (in), wvalue :: to
integer (c_int), intent(in), wvalue :: nx, ny, width

end subroutine read_from_device_c_interface
end interface

* 12d_field%device_ptr: A pointer to the device memory location where the copy of the field’s data is located.

These attributes do not conform to any specific device programming model with the idea that the specific model details
are provided by the infrastructure user. See below an example using the FortCL library:

use field_mod
use FortCL, only: create_rw_buffer

!> Declare and initialize the field
type (r2d_field) :: sshn_t
sshn_t r2d_field (model_grid, GO_T_POINTS)

sshn_t%device_ptr = create_rw_buffer (size_in_bytes)

sshn_t%data_on_device = .true.
sshn_t%read_from_device_ f = read_function

! Code using sshn_t%device_ptr

! The data will be copied back from the device to the host at this point

write (%,) sshn_t%$get_data(10,10)
contains

subroutine read_function (from, to, nx, ny, width)

(continues on next page)

6 Chapter 3. Fields

di_esm_inf Documentation, Release 1.0

(continued from previous page)

use FortCL, only: read_buffer
use iso_c_binding, only: c_intptr t, c_int

integer (c_intptr_t), intent(in) :: from
real (go_wp), dimension(:,:), intent (inout)
integer, intent (in) :: nx, ny, width

!

end subroutine read_fortcl

Use width instead of nx in case there 1is padding elements
call read_buffer (from, to, int(widthsny, kind=8))

3.2. Device infrastructure attributes

di_esm_inf Documentation, Release 1.0

8 Chapter 3. Fields

CHAPTER 4

Example

In what follows we walk through a slightly cut-down example of the use of the dl_esm_inf library.

The following code illustrates the use of the library in constructing an application:

program gocean2d
use grid_mod ! From dl_esm _inf
use field_mod ! From dl_esm inf
use model_mod
use boundary_conditions_mod

!> The grid on which our fields are defined. Must have the 'target'
'l attribute because each field object contains a pointer to it.

type (grid_type), target :: model_grid

!> Current ('now') velocity component fields

type (r2d_field) :: un_f1ld, vn_fld
!> '"After' velocity component fields
type (r2d_field) :: ua_fld, va_fld

! time stepping index
integer :: istp

! Create the model grid. We use a NE offset (i.e. the U, V and F

! points immediately to the North and East of a T point all have the

! same 1i,j index). This is the same offset scheme as used by NEMO.

model_grid = grid_type (GO_ARAKAWA_C, &
(/GO_BC_EXTERNAL, GO_BC_EXTERNAL, GO_BC_NONE/), &
GO_OFFSET_NE)

'l read in model parameters and configure the model grid
CALL model_init (model_grid)

! Create fields on this grid

(continues on next page)

di_esm_inf Documentation, Release 1.0

(continued from previous page)

! Velocity components now (current time step)
un_fld = r2d_field(model_grid, GO_U_POINTS)
vn_fld = r2d_field(model_grid, GO_V_POINTS)

! Velocity components 'after' (next time step)
ua_fld = r2d_field(model_grid, GO_U_POINTS)
va_fld = r2d_field(model_grid, GO_V_POINTS)

'l time stepping
do istp = nit000, nitend, 1

call step(istp, &
va_fld, va_fld, un_fld, vn_fld, &
-)
end do

end program gocean2d

The model_init routine is application specific since it must determine details of the model configuration being run,

e.g. by reading a namelist file. An example might look something like:

subroutine model_init (grid)
type (grid_type), intent (inout) :: grid

!> Problem size, read from namelist

integer :: jpiglo, Jjpjglo
real (wp) :: dx, dy
integer, dimension(:,:), allocatable :: tmask

! Read model configuration from namelist
call read_namelist (jpiglo, Jjpjglo, dx, dy, &
nit000, nitend, irecord, &
jphgr_msh, dep_const, rdt, cbfr, visc)

! Set-up the T mask. This defines the model domain.
allocate (tmask (jpiglo, jpjglo))

call setup_tpoints_mask (jpiglo, jpjglo, tmask)

! Having specified the T points mask, we can set up mesh parameters

call grid_init (grid, jpiglo, Jjpjglo, dx, dy, tmask)

! Clean-up. T-mask has been copied into the grid object.
deallocate (tmask)

end subroutine model_init

Here, only grid_type and the grid_init routine come from the dl_esm_inf library. The remaining code is all

application specific.

Once the grid object is fully configured and all fields have been constructed, a simulation will proceed by performing
calculations with those fields. In the example program given above, this calculation is performed in the time-stepping

loop within the step subroutine.

10

Chapter 4. Example

CHAPTER B

Indices and tables

* genindex
* modindex

e search

11

	Introduction
	Grid
	The grid_init Routine

	Fields
	The field constructor method
	Device infrastructure attributes

	Example
	Indices and tables

